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Fourth-order difference methods for the solution of Poisson equations in cylindrical polar 
coordinates are proposed. The same technique is then applied to obtain O(k’ + h4), two level, 
unconditionally stable ADI methods for the solution of the heat equation in two-dimensional 
polar coordinates and three-dimensional cylindrical coordinates. Numerical examples given 
here show that the methods developed here retain their order and accuracy everywhere 
including the region in the vicinity of the singularity r = 0. 6 1988 Academic Press, Inc. 

The numerical solution of the heat equation in polar coordinates is of great 
importance in problems of heat transfer. In this paper high order difference 
methods have been proposed to solve these equations. Ciment, Leventhal, and 
Weinberg [ 1, 21 have discussed high order operator compact implicit methods for 
parabolic equations. A symmetrical semi-implicit scheme of O(k + h2) for the 
general heat conduction equation was given by Livne and Glasner [3]. Monotone 
difference schemes for diffusion-convection equations were discussed by Stoyan [4]. 
Some explicit and implicit schemes for the cylindrical heat equation in one dimen- 
sion were derived by Mitchell and Pearce [S] and high order difference methods 
were given by Iyengar and Mittal [6]. An extension of A-Stability to AD1 methods 
was given by Warming and Beam [7]. For problems in polar coordinates, r = 0, if 
included in the domain, requires special care. The solutions usually deteriorate in 
the neighborhood of this singularity and there are two ways in which r = 0 is dealt 
with. One approach is to write the differential equation as r + 0 and construct a 
suitable difference equation valid at r = 0. The second approach is to avoid r = 0 by 
using a mesh starting at, say r = h/2 [S]. 

Recently, Tan [9] used the Chebyshev polynomial expansion and also a 
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combination of spectral and finite difference method to find the solution of three 
dimensional Poisson and Helmholtz equations in cylindrical coordinates. The 
numerical results in [9] for the spectral finite difference method exhibit second- 
order accuracy. A second-order method for the solution of the Dirichlet problem of 
two-dimensional Laplace equation in cylindrical coordinates in an annulus a < r 6 1 
by an extrapolated AD1 method was given by Evans and Avdelas [lo]. 

For the derivation of the difference schemes of high order we follow the ideas first 
proposed by Young and Dauwalder [ 111 for general elliptic equations. A simple 
procedure to obtain such formulas was recently given by Ananthakrishnaiah, 
Manohar, and Stephenson [12]. In this paper, we reline this procedure in such a 
way that the solutions retain the order and accuracy even in the vicinity of the 
singularity. This idea is used in Section 2 to derive fourth-order difference methods 
for the solution of three-dimensional Poisson equation in cylindrical coordinates. A 
separate difference equation of fourth order is derived for r = 0 and methods to deal 
with boundary conditions of mixed type are also discussed. In Section 3, we con- 
sider the extension of this procedure to the time-dependent heat equation with 
variable coefficients. A similar approach was successfully applied by the authors to 
solve one-dimensional parabolic heat equations [13]. The same approach is then 
extended to derive two-level difference schemes of O(k* + h4) for the solution of the 
time-dependent heat equation in two-dimensional cylindrical and spherical coor- 
dinates and in three-dimensional cylindrical coordinates. A further refinement 
allows us to obtain unconditionally stable AD1 methods which are of O(k2 + h4). It 
may be mentioned here that no O(k2 + h4), two-level AD1 methods are known for 
these problems. It is shown here that for a fixed Iz = k/h2, these methods are of 
O(h4). Also, such AD1 methods require the solution of only tridiagonal systems of 
equations parallel to coordinate axes, at each time step, independent of the order of 
the method. Thus the amount of computational effort required to solve a problem 
using the present O(k2 + h4) methods is marginally greater than is required by the 
lower order methods. The additional computation required is in the evaluation of 
the coefficients at each mesh point. All the computations are performed in double 
precision on VAX 8600, at the University of Saskatchewan. 

2. DIFFERENCE SCHEMES FOR THE POISSON EQUATION 

Let us first consider a procedure to construct high order difference schemes for 
the equation 

u,, + C(x) uyy + D(x) u, + F(x) u = G(x, y). (2.1) 

Consider a uniform mesh xi = x,, + ih, yj = y, +jh, i = 0( 1) N, and j = 0( 1) N, and 
write the Taylor series expansion for the coefficient functions C, D, F, and G about 
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a nodal point (xi, yi) which can be taken as the origin in the local coordinates. Let 
these expansions be 

and 

C(x) = 1 c;xi, D(x) = c DiXi, F(x) = c FiXi 

G(x, y) = 1 pi,jX'y', U(X, y) = 1 qj, j xiYi9 i,j=o, 1,2, . . . . (2.2) 

In order to obtain a difference scheme of order four we assume qi,, = 0 for i +j > 4 
and similarly for all the other coefftcients in (2.2). Substituting (2.2) in (2.1) and 
comparing the coefficients of x’yj for different values of i and j we get 

P,,j=(i+2)(i+ l)qi+Z,j + i C(j+2)(j+ 1) cdl-,,,+2 
r=O 

(2.3) 

A linear combination of equations in (2.3) as in [ 123 gives 

h2bOPOO+SI(P10h +P30h3) +S2(POlh +P03h3) + S3(p2CIh2 +P40h4) 

+ s4(P02 h2 +po4h4) +&d2 +pd4 +pd4) 

+s6 pnh3 + ~7 pd3 + ~8 p22h41 

=CQooqoo+h(Q,oq,o+Qo,qo~)+h2(Q2oq2o+Q,,q,,+Qo,qo,, 

+ h3(Q,oq,o + Q,,qz + Qnqu + Qo3qo3) 

+ h4(Q40q40 + Qxqm + Qnq22 + Quqm + Qoa.dl. (2.4) 

Here so, s,, . . . . sg are arbitrary parameters which are determined in such a way that 
Eq. (2.4) results in a difference equation over a 9-point cell for which the difference 
approximations are well known, 

2 (qloh + q3oh’)j,j= 62xui.j + O(h5) 

2 (q20h2 + q40h4)i,j= dzUi,j + O(h6) 

4(q,,h2+q13h4+q3,h4)i,j=82x62yUi,j+O(h6) 

4 (q12h3)i,j= 62x6:ui,j+ 0th’) 

4 (q22h4)i,j= ~$~~~ui,j+ O(h6L 

(2.5) 

where 6 2x”i,j=ui+I.j-ui-I,j and b~Ui,j=Ui+l,j-2U,,j+Ui-*,j. Similar 
expressions hold for (qolh + q03h3)l,j, etc. In order to obtain a difference method 
from (2.4) we select the parameters si for i = 1, . . . . 8 such that the difference 
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approximations (2.5) replace all the Taylor coefficients by differences in (2.4). This 
requires 

em = e30, all = !&I32 Qm = Qm Qos = QO.I > QII = Q,, = Q,I. 

These equations are sufficient to determine six of the parameters s,, . . . . s8 while the 
two remaining parameters are arbitrary. The parameter s,, is chosen to normalize 
the difference equation. Expressions for Q,,, are given in the Appendix. From the 
equations QiO = Q,, and QZO = Q4a we have 

(2.6) 

where pi = 6 + 2D,h2 - (03 + F2) h4, q1 = 20,, - (202 + F,) h2, and p2 = 30, + 
202h2 - (D4 + F3) h4, q2 = 12 + 20, hZ - (20, + F2) h4. From (2.6), we get 

hFP,q2-P2q,~2~ $I= (Doq2 - 2~2) k s3 = 2p, - Doq, h2. (2.7) 

Either from Eqs. (2.7) or by matching the terms up to O(h4) in the equations, we 
get the following approximations to sO, s,, and s3 given by 

so = 72, s, = 6hD,, s3 = 12. (2.8) 

These approximations are the same as given in [ 121, while the values given in (2.7) 
are the same as those obtained in [ 133. Note that it is sufficient to use approximate 
values of Qi, j when the expressions given in (2.8) are used for the parameters. These 
approximate values’ of Qi j are enclosed in square brackets, while complete 
expressions for Q,,, as given’in the Appendix are to be used when the expressions in 
(2.7) are used for the parameters. 

From the remaining equations, viz. Q,, = Qo3, Qo2 = Qo4, and Q,i = Qi3 = Q3i 
we find that s2 = s5 = s, = 0 while s4 is given by 

12&s, + (12C, - F,h2) s,h + (12C, - F2h2) s,h2 

= [2C,S,+ 2S,(C, + C3h2) h + 2S3(C2 + C4h2) h2]. (2.9) 

Here sr, and s8 are arbitrary and s ,,, i, and s3 are substituted from (2.7) or from s 
(2.8). Without loss of generality these arbitrary parameters can be set equal to zero. 
Later on, for the time-dependent problems these parameters will be chosen in such 
a way that AD1 methods can be used. Now, a difference method for Eq. (2.1) can 
be written as 

(2.10) 

where 

4L1 = 4% + 2~~6~~ + 2~~6: + 2~~6: + s,b,&+ s86f6: 

4Lz = 4Qoo + 2Qd2x+ 2Q2df + 2Qo26; + Q1282xd; + Q&6$ 
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We shall call the method (2.10) with parameters given by (2.8) along with the 
approximate values of Qj, j given in square brackets in the Appendix as “Method 2,” 
while method (2.10) with the parameters given by (2.7) and complete expressions 
for Q,,, as given in the Appendix as “Method 1.” The truncation errors of Method 1 
and Method 2 are respectively 

TE, = (3/10) h6(D6, + C,D; + 30&) ui,i (2.11) 

TE, =TE, + h6[( l/2)(0: + 20,) D”, -t 2(D,D, + 20,) Di] Ui.1, (2.12) 

where D{ = (apu/8xp), etc. Note that the truncation error for Method 1 does not 
contain lower order derivatives of u while the truncation error of Method 2 does. 
The presence of the lower order derivatives affect the results in the vicinity of the 
singularity r = 0 particularly for the time-dependent problems when both h and k 
approach zero. Method 2 is a particular case of the methods proposed in [12], 
while Method 1 is a generalization of the one-dimensional case considered in [ 133. 
For the mesh points away from the singularity both methods produce results which 
are comparable. 

Following the same procedure, we can obtain Method 1 for the three-dimen- 
sional Poisson equation 

u,,+r ~ ‘1.4, + re2use + 24; =f(r, 8, z). (2.13) 

For the discretization of (2.13) we consider a uniform mesh ri = r. + ih, 0, = tlo + jh, 
Z WI =z,+mh, i=Q(l)N,, j=Q(l)N,, m=Q(l)N,. The difference equation for 
(2.13) is 

L2ui.j.m=h2L~fi,j,m, (2.14) 

where u,,~. m = u(ri, %,, z,), etc., and 

4L, = 4s, + 2s,62, + 2s,6f + 2s& + (Q/3) s; +.@,,6; + s146,,6; 

+s,,Ps*+s 6262+s 6*6* r i 19 , e 22 9 z 

4~52 = Wud2r + 2Q2,Y + 2Qo2d; + 2Q,26; + Q,,d,,S: + Q,0262,6: 

+ Q202@? + Q220@% + Qo22W2 

s,,=6(12-7p2+5p4), s, = 2p( 3 - 3p2 + 2p4), s3 = 2 (6 - 3p2 + 2p4), p = h/r, 

35 = r2 + 2ps,3 - 3p2s,,, r2 = [s, - 2p( I+ 2~‘) si + p2(3 + 5~‘) sj J/6, 

Q~=P~o-P*(~ +P*)(s, -PS,), Qoo2 = 2~0, Q200=2so+2~(l +P~)(s,-PsA 

Qozo= 12r21rf, QI~o=W)C(~ +3P*)s, -2p(l +ZP*) +l+pr,+p2~,,- 2p3s,,, 

QUIZ = 2~1 +PG --PUS,, +p3s,,, Q202 = 2% + (43) + 2PS14 - @=s,,, 

Q022 = 2r2 + 4~3,~ - 6~‘s~ + V/r?)CW6) - 2~s~~ + OPUS,,], 

Q220 = 2(r2 + 3~s~~ - 4p2s19) + (2/rf)(s3 - 2ps, + 3p*s,). 
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The method (2.14) is a 1Ppoint formula. The parameters s,~, s,~, sr,, s19, and sZ2 
are arbitrary and may be set equal to zero. 

If r = 0 is an interior point or a boundary point such that the solution is to be 
obtained at this point then we need a difference equation which is valid at r = 0. As 
r -+ 0, we get from (2.13), 

2% + ( l/2 1 Udf3 + u,, =./lo, 0, z). (2.15) 

The corresponding difference equation at r = 0 is 

thZL3 + ‘4) uO,j, m = h4L5f0, j, my (2.16) 

where 

For r=O,u,=ues=u,.,,= 0, and the difference equation (2.16) reduces to 

h*(-48 + 665) U0,j.m + [h*(48 + 66:) + 4(h2 + 3) 6; + SiSz] ~1.j.~ 

=h4C12+6~+6~+65]fo,j,m. (2.17) 

Mixed Boundary Condition 

Let a typical boundary condition be 

a(& z) 24 + P(R z) u, = de, z) at r=rl, (2.18) 

Using the fourth-order approximation u ,x (S2,/2h( 1 + 6,2/6)) u in (2.18), we get 

(‘aj,wt-38j,m) Ui~l,j,m+4aj,,hUi,j,,+ (haj,,+3Pj,,)ui+l,j,,=6hyj,,. (2.19) 

We use both the differential equation and the boundary condition (2.18) to get a 
difference equation valid at a boundary point. The external points that are 
introduced are eliminated by combining the difference equations (2.10) and (2.19). 
We now apply the above methods to the following two problems. 

EXAMPLE 1. The problem [9] is to solve the Poisson’s equation (2.13) with the 
exact solution 

u(r, 8, z) = (cos r* + sin r*)(cos 8, + sin e,)(cos z1 + sin z,), 

where 2<r<4, 0<0<0.5, -lGz<l, and r*=z(r-4)/2, 0T=n(28-1), 
z, = n(z - 1)/2. The right-hand sidef(r, 0, z) is obtained by substituting u in (2.13). 
Dirichlet conditions are used on the boundary. 
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TABLE I 

Maximum Absolute Errors in Solution 

h Problem 1 Problem 2 

l/8 1.051( -3) 2.228( -4) 
l/16 4.241( -5) 1.371( -5) 

EXAMPLE 2. The problem is to solve the Poisson’s equation (2.13) with the 
exact solution 

u(r, e, 2) = r5 (~0s 8, + sin e,)(cos 2, + sin z,), 

whereO<r~l,O<8QO.S, -0.5~~~0.5,8,=7~(28-1),andz,=n(2z-1)/2.The 
right-hand side f(r, 8, z) is obtained from the differential equation. Dirichlet con- 
ditions are used on the boundary. 

Both the problems are solved with h = $ and h giving system of equations of 
orders 15x3~15, 31x7~31; 7x3~7, 15x7~15 in Problems1 and 2, respec- 
tively. These systems are solved by an SOR procedure. The maximum absolute 
errors are given in Table I. Our results display fourth-order accuracy everywhere 
including the region near r = 0. For example, in Problem 2, on r = & the maximum 
absolute errors obtained with h = $ and & are 2.23( -5) and 1.49( -7), respectively. 
Computational results of Tan [9, Table 31 show that the spectral finite difference 
method (using second-order differencing in the 8 direction) produces results of 
second order. 

3. TIME-DEPENDENT HEAT EQUATION 

Consider now the two-dimensional heat equation 

ut = G + W) 4 + C(x) uyy + F(x) u. (3.1) 

Substituting Gi,j= (u,)~,~ in (2.10) and using the approximation a/at z 
[V,/k( 1 - O.SV,)], where k is the mesh length in t and V, is the backward difference 
operator in t, we obtain the following difference equation for (3.1) 

(L, - 0.5ALJ 2.4;; 1 = (L, + 0.51L,) uy, j, (3.2) 

where A= k/h2 is the mesh ratio parameter and L, and L2 are defined earlier. The 
truncation error of the method is 

TE = [ - 12k3u,,, + (3/10) kh4(D: + COD; + 30,,05,) u-j;,, + ... . (3.3) 

Note that (3.2) requires solution of a system of equations with a large band 
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width at each time level. It is also difficult to study the stability of (3.2). We 
therefore modify the difference equation (3.2) in such a way that the order of the 
truncation error is unchanged while the resulting difference equations require the 
solution of only tridiagonal matrices at each time level. This difference scheme is 
given by 

[a, +a*6~.x+a,6~][1 +c&] u:,f’= Ch, +6,6,,+6,62,][1 +c&] u:.,, (3.4) 

where a, = s,, - 0.51Q,,, 2u, = s, - 0.5LQ10, 2u, = sj - 0.5LQ,,, 12c, = 1 - 6K(x), 
b, = s0 + 0.511Q,, 2b, = .P, + 0.5LQ,,, 26, = sj + 0.51Q,,, !2c, = 1 + 6&Z(x). This 
factorization of the difference operator changes only the coefficient of k3 in the TE 
(3.3)., Using the von Neumann method, the amplification factor 5 of (3.4) can be 
written as 4 = 5, t2, where 

~,={[b,-2b,(1-cos~h)]+2b,isin~h}/{[u1-2u,(1-cos~h)]+2u,isin~h} 

(3.5) 

r*= [I -2c,(l -cosyh)]/[l-2c, (1 -cosyh)]. (3.6) 

It is seen that 1 rZl < 1 for C(x) 20 and hence for stability we require / 4, ) < 1. A 
split form of (3.4) is 

[a, + u262,3.~38:] ui,j= [b, +&62x + b3b:][ I+ ~,6:] uY,~ (3.7) 

[ 1 + c, $1 u;,; ’ = vi, i. (3.8) 

The intermediate boundary conditions required for the solution of ui.i are obtained 
from (3.8). 

Consider now, the two-dimensional problem 

u,=u,,+ar-1u,+r-2u88+eu, e constant, (3.9) 

where 0 -K c1< 1 or a = 1, 2. When LX = 1, 2 it is a two-dimensional equation in cylin- 
drical and spherical coordinates, respectively. Replacing the variables x, y by I, 8, 
respectively, and setting D = a/r, C = l/r2, F= e in (3.4), we get the AD1 method in 
split form as (3.7) and (3.8), where 

s,=6[12-a(6+a)p’+a(4+cr)~~], s, =2clp[3-(2+cr)p2+(1 +er)p4] 

s,=2[6-cr(2+a)pz+a(l+cr)p4], P = h/r,, C(r) = r;*, 

Q,,,, = eh2so, Qlo=Q?o+eh2sl, Qzo = Q% + eh2s3, 
(3.10) 

Q~o=crp~so-p(l +p2Nsl -PS~)I, Q&=2Cso+orp(l +P~NsI-P~)I. 

Note that the values of s,,, s,, s3, Qoo, Q,,,, and Q20 are the same as were obtained 
in the one-dimensional case [ 131, where it was shown that (l, ( d 1 for all eb 0. 
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Hence the AD1 method (3.7), (3.8) with the coefficients given in (3.10) for Eq. (3.9) 
is unconditionally stable for all e < 0. The TE now becomes 

TE=k3T,+kh47’,+... , (3.11) 

where T,=12 [-u,,,+3rP2{0T-(4-~) r~‘D,+2(3-cr)r-*+e)D~u,],,, and 
T, = (&)[D; + 3~ir,~D; + r,:*D;] ui,,. 
For the two-dimensional problem 

u,=u,,+ar-‘u,+ulZ+eu, e constant, (3.12) 

we have the AD1 method (3.7), (3.8) with D = a/r, C = 1, F= e, and the variables x, 
JJ are replaced by r, z, respectively. The other coefficients are given by (3.10). The 
method is again unconditionally stable. The TE now has the form 

TE=k3T3+kh4T,+..., (3.13) 

where T, = 12 [ -u,,, + 3(0, - 0:) D~u,]~,~ and T4 = (&)[DF + 3crr,:‘D; + Dz] ui, j. 
Method (3.4) can be extended to the three-dimensional case, 

U,=U,,+r~lU,+r~*ues+u,,+eu, e constant. (3.14) 

This extension is equivalent to the AD1 formulation of (2.10), which is given by 

[a,+a,6,,+a36,2][1 +c34$][1 +d,6;] uy,;,fn 

= Cb, +bbr+bmC1 +c4GlCl +G11 q,,m, (3.15) 

where 12c, = 1 - (61/r?), 12d, = 1 - 61, 12c, = 1 + (61/r?), 12d2 = 1 + 61, and a,, a2, 
etc., are defined earlier. The split form is 

[U,+u2~2,+u3~~]wi,j,,=[~,+b26,,+636~][1+C46~][1+d*6~]U;j,, (3.16) 

Cl +c36i1 ui,~,m=Wi,j,m (3.17) 

[l +d&] z4;,;,fn=Ui,j,m. (3.18) 

The intermediate boundary conditions for the solution of wi,j,m and ui,j,m are 
obtained from Eqs. (3.17) and (3.18). The TE of (3.15) is 

TE = k3T5 + kh4T, + . . . , (3.19) 

where T5 = T3 + 36[rp2(Dz - 3r-‘D, + 4r-* +e) Di(u, - D~u)]~,~, m and T6 = 
(&)(D~+~~,:‘D,~+~;*D~+D~)u~,~,~. Method (3.15) is also unconditionally stable. 

In (3.9), (3.12), and (3.14), we have assumed e = constant, which is often the case. 
However, it is possible to extend the method to include the cases e = e(r), 
e = e(r, z), and e = e(r, 0). These generalizations are now discussed. Suitable changes 
in the independent variables are assumed. 
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(a) e=e(r). If e=e(r) in (3.9) or (3.12), then the method (3.7) and (3.8) 
retains its order, O(k2 + h4), with the new definitions 

Qoo = h2[eoso + (e, h + e3h3) s1 + (e2h2 + e4h4) s3] 

Qlo = QTo + h2[(eo + e2h2) s1 + (e,h + e3h3) s3] 

Q20 = Qfo + h’[e,hs, + (e. + e2h2) s3]. 

(3.20) 

When e = e(r) in (3.14), method (3.15) retains its order and the TE remains the 
same as given in (3.19). 

(b) e = e(r, z). If e = e(r, z), then the method (3.4) is modified so that it 
retains its order by replacing the second brackets on the left- and right-hand sides 
by 

[l -1*h3eo16,,+d,6f], [ 1 + A*h3e,,6,, + d,Sa], (3.21a) 

where A* = 1124, 12d, = 1 - 61, and 12d, = 1 + 61, respectively, and we define 

Qoo=h2C{eoo+(eo2h2+ eo4h4)/6J SO + hoh + e3,h3 + V3/6) e121 s1 

+ {e20h2+e40h4+(h4/6)e2,} s31 

Qlo=Q~o+~2C{e~+ ezoh2+(h2/6)eo,) $I+ (e,,h+e,,h3+(h3/6)e,2} ~31 

Q20=Q2*o+~2CeIo~~l + fem+e20h2+(h2/6)eo2) ~31. (3.21b) 

Note that in the above e lo=ik/ar, e20=(a2e/ar2)/2, e12= (a3ep-az2)/2, etc. If 
e = e(r, z) in (3.14), then the third brackets on the left- and right-hand sides of 
(3.15) are replaced by (3.21a) with Qoo, etc., being defined by (3.21b). 

(c) e= e(r, 0). If e=e(r, 0) in (3.9) or (3.14), then the method (3.4) or (3.15) 
is modified so that it retains its order by replacing the second brackets on the left- 
and right-hand sides by 

[l -I*h3eo,6,,+c,6~], [ 1 + A*h3eo, 620 + c,@] , (3.22) 

where c3 and c4 are defined in (3.15), respectively. Qoo, etc., are again defined by 
(3.21b). 

If r =0 is a part of the boundary and the solution at r = 0 is also to be deter- 
mined then we need a difference equation valid at r = 0. We illustrate the procedure 
for one of the equations, say (3.12) for a = 1. As in Section 2, we have, as r + 0, 

u,= 2u,,+ u,,. 

A suitable O(k2 + h4) approximation is 

(1+n,6~)(1+~261)uIS,:‘=(1+13S~)(1+~4~5)U;f,j, 

(3.23) 

(3.24) 
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TABLE II 

Maximum Absolute Errors. Example 3 

1 l\h 0.1 

Method 1 Method 2 

0.05 0.1 0.05 

I 0.8 0.244( - 5) 0.157( -6) 0.234( - 5) 0.148( -6) 
1.6 0.155( -6) 0.997( -8) 0.149( -6) 0.943( - 8) 

2 0.8 0.103( -4) 0.648( - 6) 0.102( -4) 0.638( -6) 
1.6 0.654( - 6) 0.412( -7) 0.648( - 6) 0.406( - 7) 

4 0.8 0.418( -4) 0.261( -5) 0.417( -4) 0.260( - 5) 
1.6 0.266( - 5) 0.166( -6) 0.265( - 5) 0.166( -6) 

where 121, = 1 - 121, 12& = 1 - 6J., 121, = 1 + 1211, 12& = 1 + 62. A split form is 

(1 +i&)u,,j= (1+1,6:)(1+&6f)u;,, (3.25) 

(1 + &SZ) u;l,; ’ = UO,j’ (3.26) 

where, in (3.24) we are to use the condition U, =0 at r =O. This implies that 
v-l,,=vl,j- Note that Eq. (3.26) is same as (3.8) valid along lines parallel to z-axis. 
The intermediate boundary conditions are obtained from (3.26). 

In all the above methods, the integration is first carried along lines parallel to the 
r-axis, then along the &axis, and then along the z-axis. These methods produce 
tridiagonal systems for solution along lines parallel to the axes. They are all two- 
level formulas so that no extra starting values are required and all these methods 
are unconditionally stable so that large step lengths along the r-direction may be 
used. All the above methods shall be referred to as “Method 1.” As in Section 2, we 
may define a “Method 2” by choosing s o, ,, s3 as in (2.8) and Qoot Qlo, Q20 being s 
the quantities inside the square brackets in the Appendix. These methods are also of 
O(k2 + h4). For a fixed A, all the above methods behave like fourth-order methods. 

TABLE III 

Maximum Absolute Errors on Initial Time Levels. Example 3 

I 

0.1 

0.2 

t\h 

0.001 
0.002 
0.002 
0.004 

Method 1 Method 2 

0.1 0.05 ER 0.1 0.05 ER 

0.285( -6) 0.279( - 7) 10.2 0.287( -6) 0.373( - 7) 7.7 
0.454( - 6) 0.321( -7) 14.1 0.474( -6) 0.480( - 7) 9.9 
0.464( - 6) 0.330( -7) 14.1 0.480( - 6) 0.474( - 7) 10.1 
0.614( -6) 0.340( - 7) 18.1 0.687( -6) 0.585( - 7) 11.7 

Note. ER is error ratio E(O.l)/E(0.05). 
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TABLE IV 

Exact Solution (Ex) and absolute error in the numerical solution on r=O, Example 3 (Method 1): 
ER, = absolute error with h = 0.1; ER2 = absolute error with h = 0.05 

I 1.0 4.0 

z I 0.8 1.6 0.8 1.6 

-0.8 Ex -0.786500( - 1) -0.490907( -2) -0.786500( - 1) -0.490907( -2) 
ERI 
ER2 

-0.4 Ex - 

ER, 
ERz 

0.0 Ex - 

ER, 
ER2 

0.1138(-S) 
0.7399( - 7) 

-0.871839( - 1) 
0.2356( - 5) 
0.1514( -6) 

-0.624168( - 1) 
0.2176( -5) 
0.1396(-6) 

0.7204( - 7) 
0.4682( - 8) 

-0.544174( -2) - 
0.1497( -6) 
0.9620( - 8) 

-0.389586( -2) - 
0.1391( -6) 
0.8920( - 8) 

0.1993( -4) 
0.1246( -5) 

-0.871839( - 1) 
0.4060( - 4) 
0.2538( - 5) 

.0.624168( - 1) 
0.3732( -4) 
0.2333( - 5) 

0.1260-5) 
0.7885( - 7) 

-0.544174( -2 
0.2578( - 5) 
0.1612(-6) 

-0.389586( -2 1 
0.2383( -5) 
0.1491( -6) 

EXAMPLE 3. The problem is to solve (3.12) with u = 1, e =0 in the region 
O<r<l, - 1 <z < 1. The exact solution is u(r, z, t) = Jo(r) (cos z, + sin zi) 
exp(-pt), wherez,=n(z-1)/2andB=1+n2/4.Atr=0, wehaveu,=Oandall 
other conditions are provided from the exact solution. 

At Y = 0, we use (3.25) and (3.26). At all other mesh points we use (3.7), (3.8) 
with (3.10) (ct = 1, C(r) = 1). The problem is also solved using Method 2. Maximum 
absolute errors are given in Table II for J. = 1, 2,4 with h = 0.1, 0.05. Table III gives 
the maximum absolute errors on the first two time levels for A = 0.1, 0.2. Table IV 
gives the exact solution and absolute errors on r = 0 for ;1= 1,4 and at some selec- 
ted points of z = 0, -0.4, -0.8. These values of z are chosen, because the maximum 
error on r = 0 occurs in the vicinity of z = - 0.4. 

For large t, it is seen that both the Methods 1 and 2 give almost the same results. 
At the initial time levels for large 1, the maximum absolute errors are almost same, 
the Method 1 being marginally better, However, at the initial time levels for small A, 
Method 2 has larger errors and does not show the required error ratio (ER) as 
given in Table III. The numerical solutions remain accurate even on r = 0. It is 
found that the maximum error generally occurs on r = h, except for the first few 
time levels where it occurs on r = 0. However, the difference between the errors on 
Y = 0 and r = h is marginal. 

CONCLUSIONS 

In this paper we have derived fourth-order difference methods which are 
applicable to the Poisson equation in cylindrical polar coordinates. These ideas are 
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extended to derive O(k* + h4), two-level, unconditionally stable ADI methods for 
the solution of the multidimensional heat equation in polar coordinates. These 
methods give accurate results everywhere including the region in the vicinity of 
r= 0. A reason for this is that the truncation errors do not contain lower order 
derivatives. A special treatment is required if r = 0 is a part of the boundary and the 
solution is to be determined at r = 0. This is illustrated for the Eq. (3.12) in the r-z 
plane. A similar procedure can be invoked for the problems in the r-8 plane. The 
solutions remain accurate at all points on r = 0 and the order is preserved. The 
computational effort required for the use of these higher order AD1 methods is 
about the same as required for the lower order methods. The additional com- 
putational effort required is in the evaluation of the coefficients at each mesh point. 

APPENDIX 

Qm= [h2s,Fo+h3slFI +h4s3F2] +h’~, F3 + h6s,F4 

Q,,=Ch~oD,+h2s,(D,+F,)+h3sJD2+F,)] 

+ h4s,(D3 + F2) + h%,(D, + F3) 

Q,, = [h2s, F,, + h3s, F, ] + h4s, F, + h’s, F3 

Q20 = Ps, + 2hs, D, + h2s3(2D, + F,)] + h3s,(2D2 + F,) + h4s3(2D3 + F,) 

Q,j = [hs,D, + h2s,(D, + F,)] + h3s,(D, + F,) + h4s,(D, + F2) 

Qoz = [2s,C, + 2hs, C, + 2h2s3C2 + h2s4Fo] 

+ 2h3s,C, + h3s6F, + 2h4s3C4 + h4s, F2 

Qm = [6s, + 3hs,D,] + h2s,(3D, + F,) + h3s3(3D2 + F,) 

Q,, = [2s, + 2hs,D,] + h2s,(2D, + F,) + h3s,(2D2 + F,) 

Q,2 = W’,s, + 2hs,C,] + hs,D, + 2h2s, C2 

+ h2S6(D, + F,,) + 2h3s3 C, + h3s8(D2 + F, ) 

Qo3 = [es2 Ct3 + 6hs, Cl ] + 6h2s7 C2 + h’s, Fo + h3s5(6C3 + F, ) 

Q40 = [ 12S,] + 4hs,D, + h2s3(4D, + F,,) 

Q3, = [6s51+ 3hs,D, + h2s,(3D, + F,,) 

Q22 = [2S, cc, + 2J,] + 2hs, C, + 2hs,D, + 2h2s3 C, + h2s,(2D, + F,,) 

Q13 = C6s,Gl+ 6hs,C, + hs,Do + 6h2s,C2 + h2s,(D, + Fo) 

Qo4 = [12S,co] + 12hs,c, + 12h2s,C2 + h’s,&,. 
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